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Self-field and wake of a charged particle in a plasma
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The self-field and the associated plasma response of an externally injected charged particle in plasmas are
investigated within a self-consistent formalism that extends a formula used in plasma wake-field acceleration.
The response of plasmas to such a self-field is also investigated through this self-consistent theory. This
self-consistent theory leads to a correct formula of plasma wake field.
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It is well known that, for a charged point particle in
vacuum, its electric field includes two terms: self-field and
radiation field [1]. If the particle is in uniform motion, its
electric field is identical to the self-field term, which moves
with same velocity as particle velocity Sc. Because charged
particles in uniform motion possess self-fields moving at a
fixed velocity, they are often used to excite plasma wave of
the expected phase velocity [2—-6]. Here, the expected phase
velocity is equal to the moving velocity of the driving field.
When studying the excitation of plasma wave by a bunch of
charged particles at a fixed velocity Bc, we have to deal with
the self-field of a driver particle in plasmas. This issue is
crucial for understanding correctly the physics of excited
plasma wake field.

In this work, we develop a self-consistent theory for the
self-field of an externally injected particle in plasmas. In
many published works [2,3], plasma response to this self-
field, or plasma wake field, is described elegantly by a fluid
equation. Despite this equation captures the main physics
behind a complex phenomenon, however, the correct or rea-
sonable solution of this equation is not yet reached. If a
correct or reasonable solution is presented in Ref. [2], a uni-
versal theory for plasma wake field at any phase velocity
would have been established in the mid of 1980s. Unfortu-
nately, the solution presented in Ref. [2] seems unsuccessful
because it is not consistent with the basic assumption on this
equation. This unsuccessful solution greatly limits the theory
in Ref. [2] to be only valid at the 8~ 1 case. This will lead to
many incorrect viewpoints on plasma wake field. The pur-
pose of this work is to obtain a correct form of plasma wake
field from a self-consistent theory on the self-field of an ex-
ternally injected particle in plasmas.

For convenience, we define the self-field of a charged
partlcle in vacuum as bare self-field and denote it as Eself

seiy fulfills the following formulas:

0 £1
Ese[f|§#0 x @?’ velf|§ 0=
[V : E?ezf]|§¢0 =0, [V Eself]|§=() = 5(5) #0, (1)

where £é=z—pPct, Bc is the particle’s velocity, and £=0 de-
notes the axial position of the point charge. In contrast, its
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self-field in plasmas meets the similar equation

[V-Egifllez0=0. [V Egylleo= 8(8) # 0. (2)

However, except for Ej,, the total self-field also includes
the contribution from plasma electrons E},;, which meets

[V- Epl] = ”pz(f), (3)

where 1,,/(§) stands for plasma charge density generated from
the interaction. For unperturbed plasmas, there is n,/(&,7)
=0. For any position ¢, whether n,/(&, 7) can derivate from 0
is determined by the total self-field [E,+E,](&,7) at this
point. The force balance condition, [E,.;+E,](&,7)=0,
could ensure n,,(&, 7)=0 at any time 7. Therefore, two con-
ditions

Eyl(§7) =0,

define the unperturbed plasma region.

Note that the equation [V-f]=8(§) could have multiple
solutions. Except for the well-known solution f |§¢0
«(&/[€)(1/€) and f|e0=0, other solutions, such as f(&
#0)=/(£=07), are also possible. Both E,;, and Eself satisfy
the same differential equation [V-f]=48(§), and they are as-
sociated with different conditions for determining the solu-
tion. If the unperturbed region starts from =0 and the solu-
tion of E, +E), in the unperturbed region is described by
f(E#0)=f(£=0%), the above two conditions will require
E, (§#0)=—E[(§#0)=-E,,;({=0%). Because the self-
field of any point charge on itself should be zero, there is

E,,;(é=0)=0. For a point charge, there should be a jump
from E;(£=0) to E,,{é=0%) because of [V- Eve,f]|§ 0
=8(¢). The above two conditions also require that E,; has a
similar jump (but of opposite sign) and n,, takes a Dirac-like
shape at £€=0. Therefore, this implies that if the unperturbed
region starts from £=0, there must be n,,l(§ 0)# 0. Thus,
when ¢ transits from 0 to 0%, E,,; undergoes a jump similar to
that of E,, (but of opposite sign) and hence [E|,;
+Ep,](§, 7)=0 is valid. Moreover, a static external particle of
charge Q expels plasma particles whose charge amount is
equal to Q, and hence causes n,, at {=0 exhibiting a Dirac-
function-type valley (but the total charge density, &(&)
+n,,(€), is still zero at §=0). Those expelled plasma charges

[Ese[f+ V- [Eself+ Epl](g’ 7-) =0 (4)
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distribute over the whole space and hence correspond to a
negligible plasma charge density in the £#0 region (i.e.,
N 0).

volume—o°

When we investigate the interaction of a charged particle
with plasmas, it is not necessary to know exactly E;r be-
cause we are interested in n,,. Except for =0, there is n
=V-[E;+E,]. A differential equation of n,
turbed region could be found in Ref. [2],

Igep + ko, = ko S(é)e, (5)

pl
in the per-

where k,=w,/Bc and w), is plasma circular frequency. Ac-
cording to Ref. [2], this equation is based on an assumption
that the change in velocity of the driving particle is “negli-
gible,” i.e., d,8=0. This assumption implicitly requires
[Eyeip+E,J(§=0)=0. Moreover, how to determine the condi-
tion for determining solution of this differential equation is a
worthy question. When considering the condition for deter-
mining solution, we should take into account the above two
conditions for the unperturbed region. A solution of Eq. (5) is
presented in Ref. [2] as

ny(§<0)= ]—C:sin(kpg), n,(§>0)=0. (6)
The condition for determining this solution is [E,;+E, (£
=0)=cos(0) # 0 and the dichotomy between the unperturbed
and the perturbed regions is located at £=0. Obviously,
[Eep+E,](€=0)=cos(0) #0 is not consistent with the
above-mentioned assumption. Moreover, this dichotomy cor-
responds to V-[E,,;+E,](é=0)=5(§) # 0 and hence contra-
dicts the above two conditions for the unperturbed region.

The correct form of the condition for determining solution
should be

[Eself + Epl](g = Zhoundary> T) =0,

V. [Eself+ Epl](g = Zboundury’ T) = 0’

[Eself+Epl](§=0) =0, (7)

where zj0un4qry Stands for the position of the dichotomy, &
> Zhoundary 18 for unperturbed region, and §<zj,ungary is for
perturbed region. A solution of Eq. (5)

o) ez

pl<§> 2k ) 0

could satisfy these conditions and corresponds tO Zj,undary
=m/(2k,)=[Bc/(2w,)]m. Indeed, because of (9,5—&5, for &
=¢+1, Eq. (5) could be expressed as dgrgim,, (€' )+k> p,(g’)
—k2 (&' =1)/e. This also implies that the solution of Eq (5)
is not unique. Solution (8) could be obtained by shifting
solution (6) along the & axis with a distance 7/(2k,).

Since two solutions are very much alike in perturbed plas-
mas, it seems trivial to exactly determine which one of two
solutions describes the plasma wake of a charged particle.

k
~+cos(k,é),
e

(8)
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Unfortunately, this is not a trivial task for wake-field accel-
eration and excitation. If the wake field of a charged particle
is described by solution (6), energy balance requires that the
increment in the wake-field energy E? VA is equal to the
decrement in the klnetlc energy of dr1v1ng particle y,m, c?
ie., dE> LUA==dym, ¢? [2]. Therefore, solution (6) deter—
mines that the excitation of wake field requires inevitably the
deceleration of the driving particle. As pointed out above,
this contradicts the assumptlon d,,B 0 [2].

Because of V-E,=—en,, lvtA is indeed a portion of
total potential energy [ [—enp,+q5(§)][¢p,+ byerdé, where g
is the charge of the driver particle. Strictly speaking, the
energy balance condition should be written as

0 =d/[total kinetic energy + total potential energy]

=d[E 1”’A +q¢p(0,7) + f — enp oo dé+ q b0, 7)
+ ’)/qmecz + f npl’)/(vpl)meczdg] . (9)

Since solution (6) corresponds to ¢,/(0,7)=0, this implies
that the increment in E> 1 18 inevitably accompanied by the
decrement in y,m, 2. In contrast, if the wake field is de-
scribed by solution (8), we will find that the energy balance
condition could be valid even when y,m, c? is conserved. In
such a situation, d [EZ,vtA]>0 could be valid if d,qq&,,l(O)
<0 exists. For solutlon (8), the deformation effect in per-
turbed plasmas is included and hence ¢, is time dependent
in the B frame, only the boundary condition restricting
d,(é=7/(2k,), 7)=0.

We have developed a self-consistent theory on the self-
field of an externally injected particle in plasmas. This self-
consistent theory indicates that the dichotomy between un-
perturbed and perturbed plasmas does not automatically
locate at the particle’s position but at a position ahead of the
particle. The position of the dichotomy depends on the par-
ticle’s velocity. Because plasma wake field is the response of
plasmas to the self-field of the driver particle, rather than to
the driver particle itself, the causality does not require that
the dichotomy must be at £€=0. Strict analysis indicates that
the causality requires the dichotomy to be located at
Zhoundary < . Because the dichotomy is correctly determined,
this self-consistent theory will lead to a correct formula of
the plasma wake field of a bunch of charged particles at a
fixed finite velocity.

The significance of our theory is that it extends a well-
known fluid theory for plasma wake field [2] with universal
validity. More important, our theory enables the fluid theory
for plasma wake field to be consistent with the result of
various advanced self-consistent simulations. For instance,
when we apply particle-in-cell (PIC) simulation to study the
excitation of plasma wake field, it is difficult to find the
consistency between simulation results and fluid theory pre-
sented in Ref. [2]. This is because in PIC simulation every
macroparticle contributes to the self-consistent field at the
position in front of itself, whereas in the fluid theory [2]
every particle does not contribute to the self-consistent field
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in front of itself. Moreover, the above-mentioned correct en-
ergy balance relation reveals that the increment in the
strength of a plasma wake field could be achieved through
the deceleration of the driver particles. This is indeed a the-
oretical confirmation of a viewpoint that a driver particle
could excite a plasma wake field whose phase velocity is
equal to the particle’s velocity. According to Ref. [2], the
increment in the strength of a plasma wake field must be
realized through the deceleration of the driver particles, and
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hence this indeed implies that a driver particle cannot excite
a plasma wake field of fixed phase velocity. In short, we have
reached a sound improvement on the fluid theory in Ref. [2].
Such an improved fluid theory is of practical value to inter-
pret correctly the associated experimental and simulation
results.
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